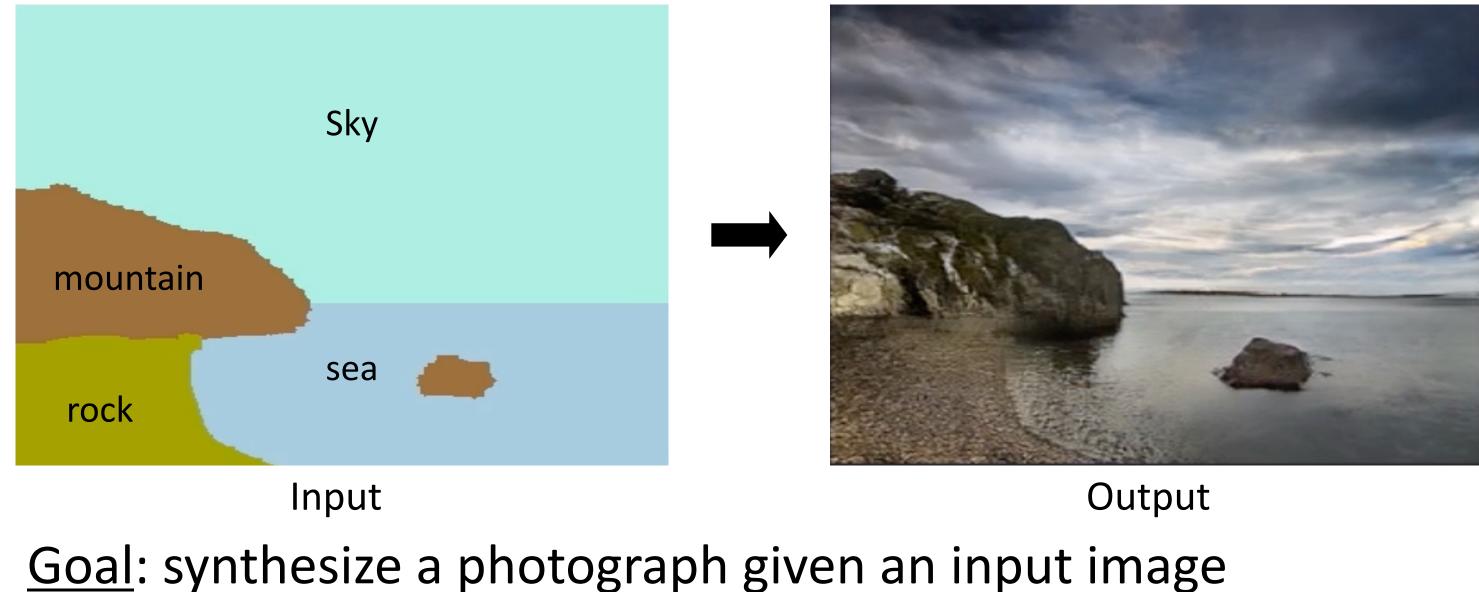


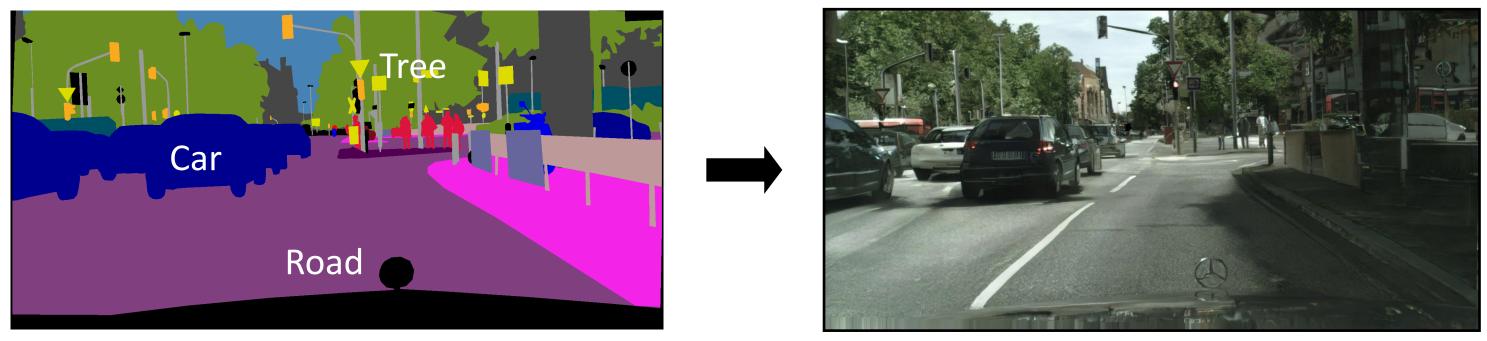
Conditional GANs, Image-to-Image Translation Jun-Yan Zhu 16-726, Spring 2023

© https://affinelayer.com/pixsrv/, pix2pix [Isola et al., 2016]

Problem Statement



Problem Statement



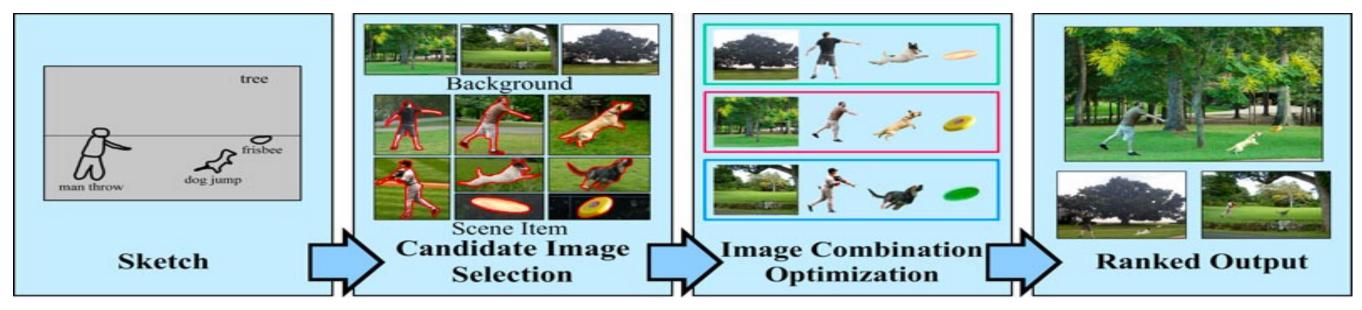
Input

Output

<u>Goal</u>: synthesize a photograph given an input image

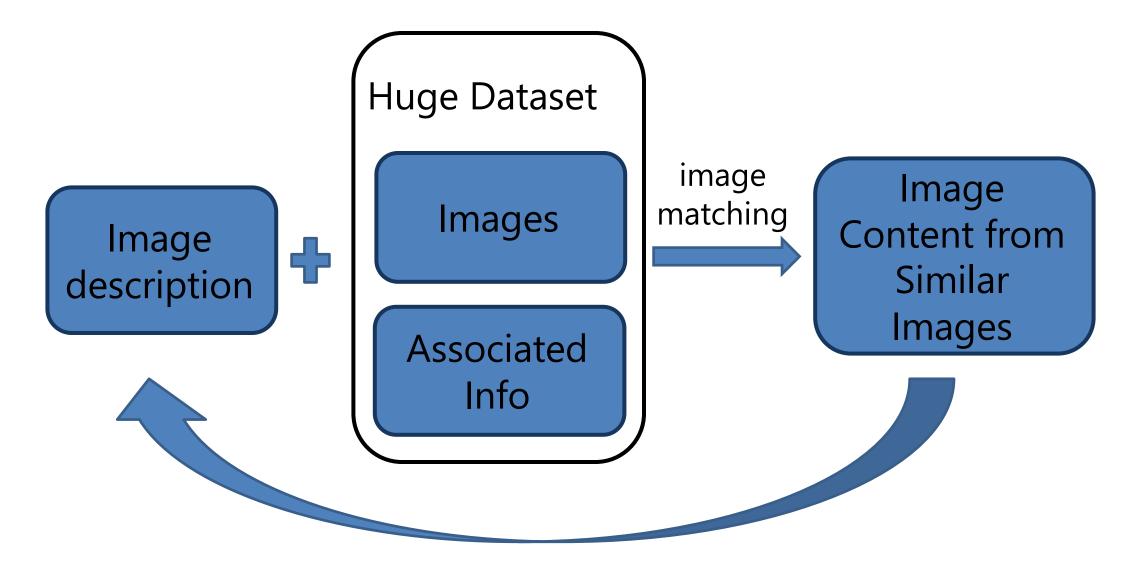
Early work (Example-based)

Semantic Photo Synthesis [Johnson et al., Eurographics 2006]



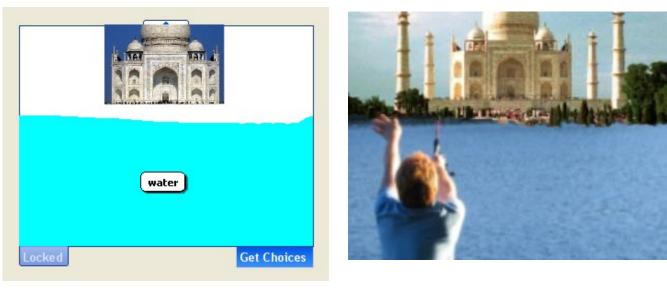
Sketch2Photo [Tao et al., SIGGRAPH Asia 2009]

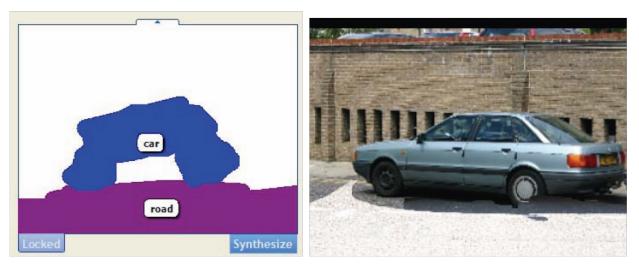
Semantic Photo Synthesis



M. Johnson, G. Brostow, J. Shotton, O. A. c, and R. Cipolla, "Semantic Photo Synthesis," **Eurographics 2006**

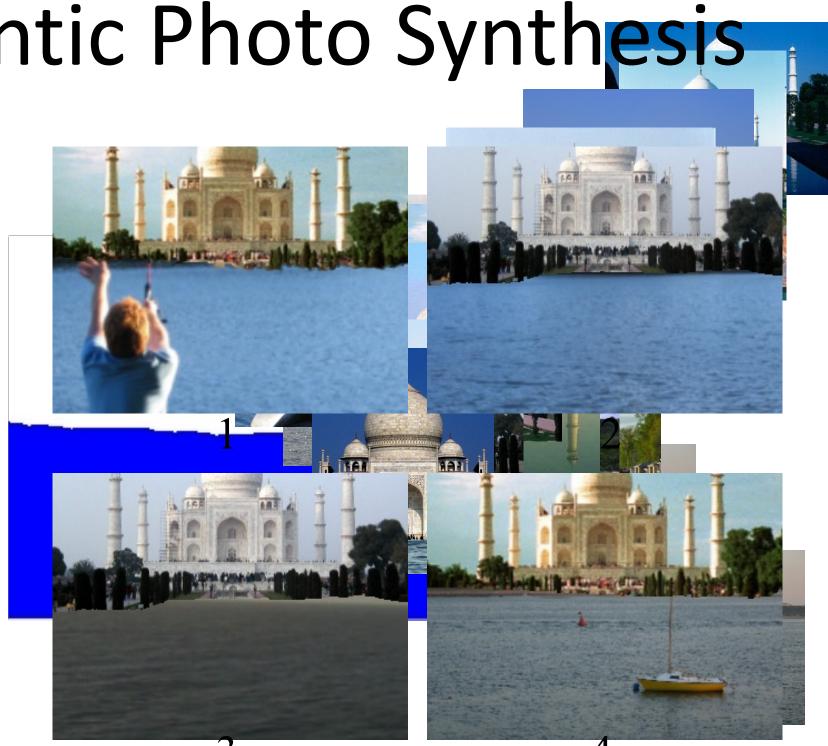
Semantic Photo Synthesis [EG'06]



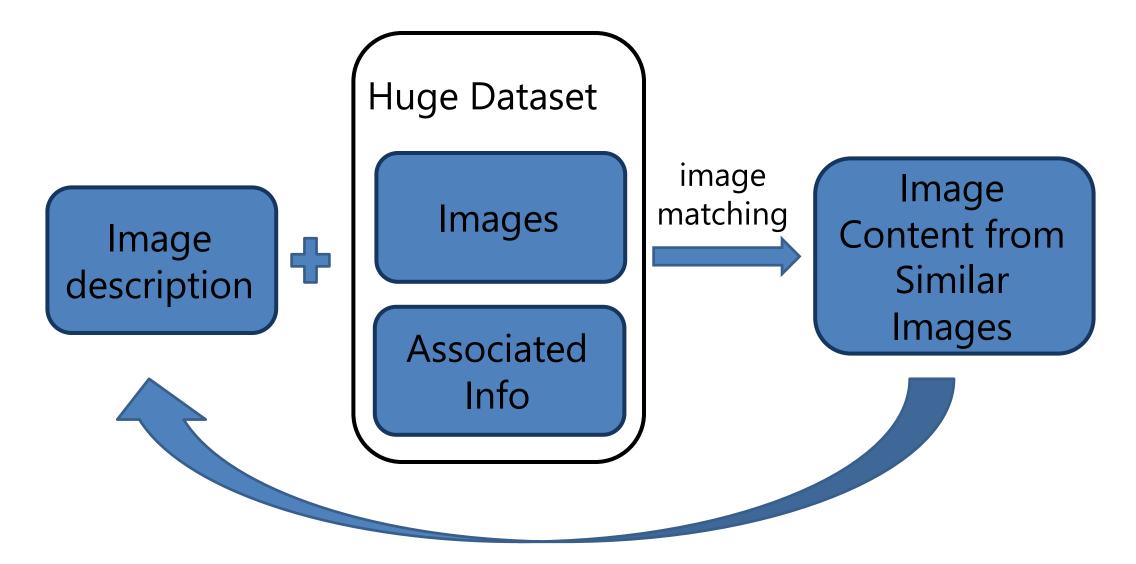


M. Johnson, G. Brostow, J. Shotton, O. A. c, and R. Cipolla, "Semantic Photo Synthesis," Eurographics 2006

Semantic Photo Synthesis



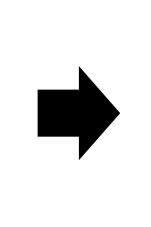
Semantic Photo Synthesis

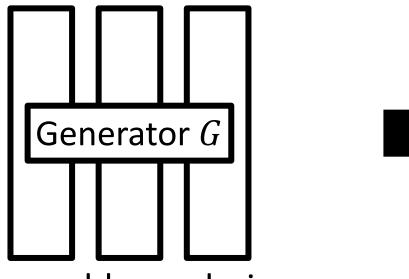


M. Johnson, G. Brostow, J. Shotton, O. A. c, and R. Cipolla, "Semantic Photo Synthesis," Computer Graphics Forum Journal (Eurographics 2006), vol. 25, no. 3, 2006.

Learning-based methods

Loss functions for Image Synthesis

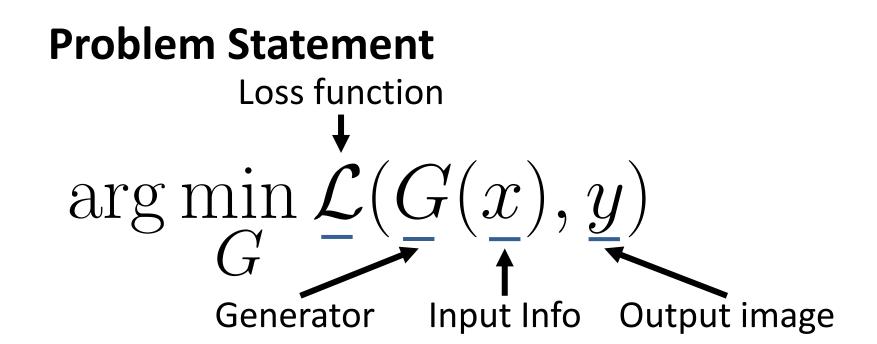




Learnable rendering

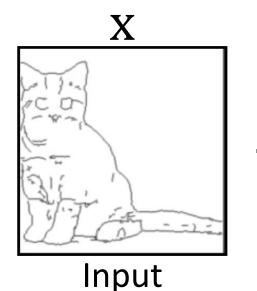
Input X

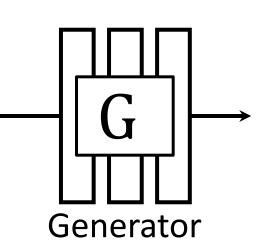
- What is a good objective \mathcal{L} ?
- What is a good loss?
- How to calculate it efficiently?
- How to collect data (x, y)?

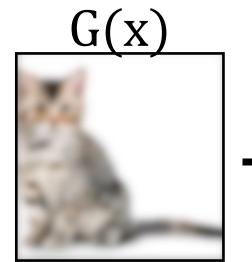


Output Image G(x)

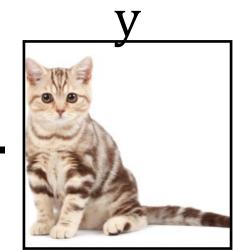
Designing Loss Functions







Predicted output

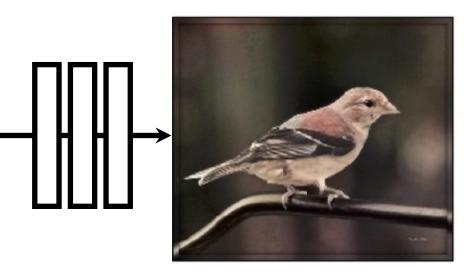


GT output

L2 regression $\arg\min_{G} \mathbb{E}[||G(x) - y||]$

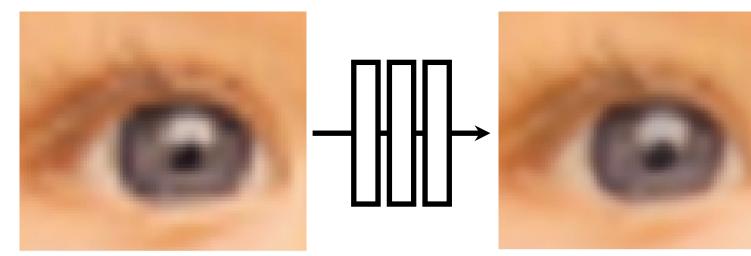
Designing Loss Functions

Image colorization



L2 regression

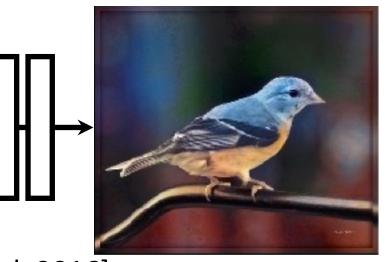
Super-resolution



L2 regression

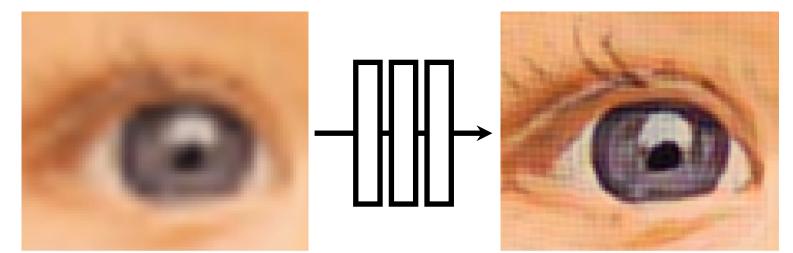
Designing Loss Functions

Image colorization



Classification Loss: Cross entropy objective, with colorfulness term

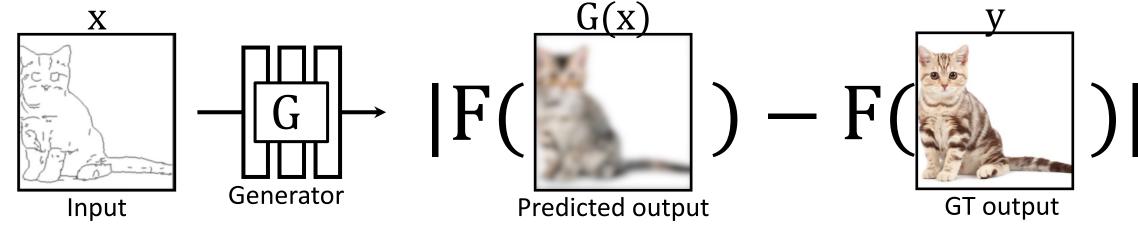
[Zhang et al. 2016] Super-resolution



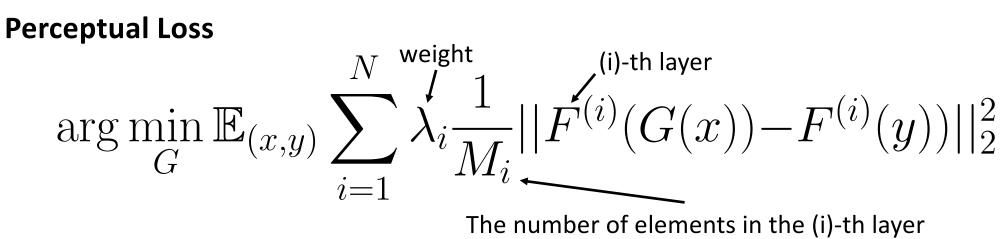
Feature/Perceptual loss Deep feature matching objective

[Gatys et al., 2016], [Johnson et al. 2016], [Dosovitskiy and Brox. 2016]

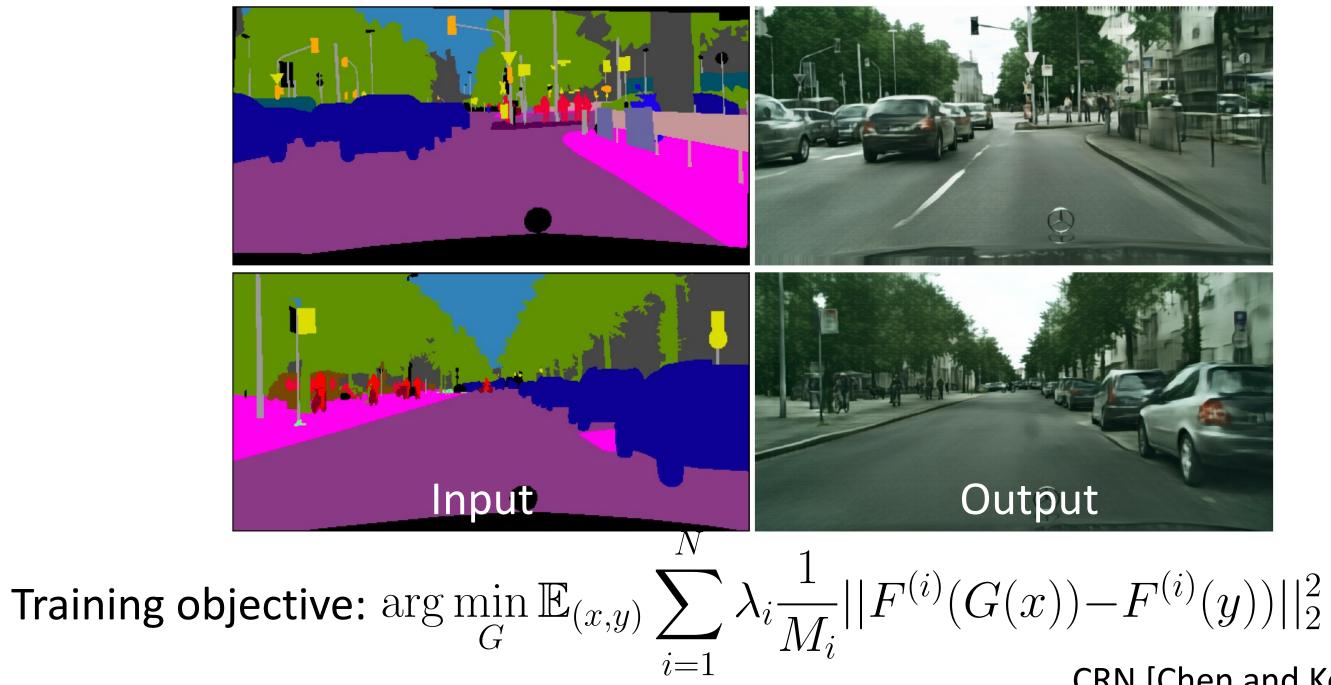
CNNs as a Perceptual Metric



F is a deep network (e.g., ImageNet classifier)

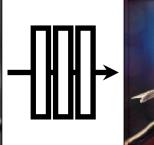


Learning with Perceptual Loss

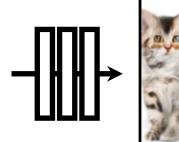


CRN [Chen and Koltun, 2017]

Generated images

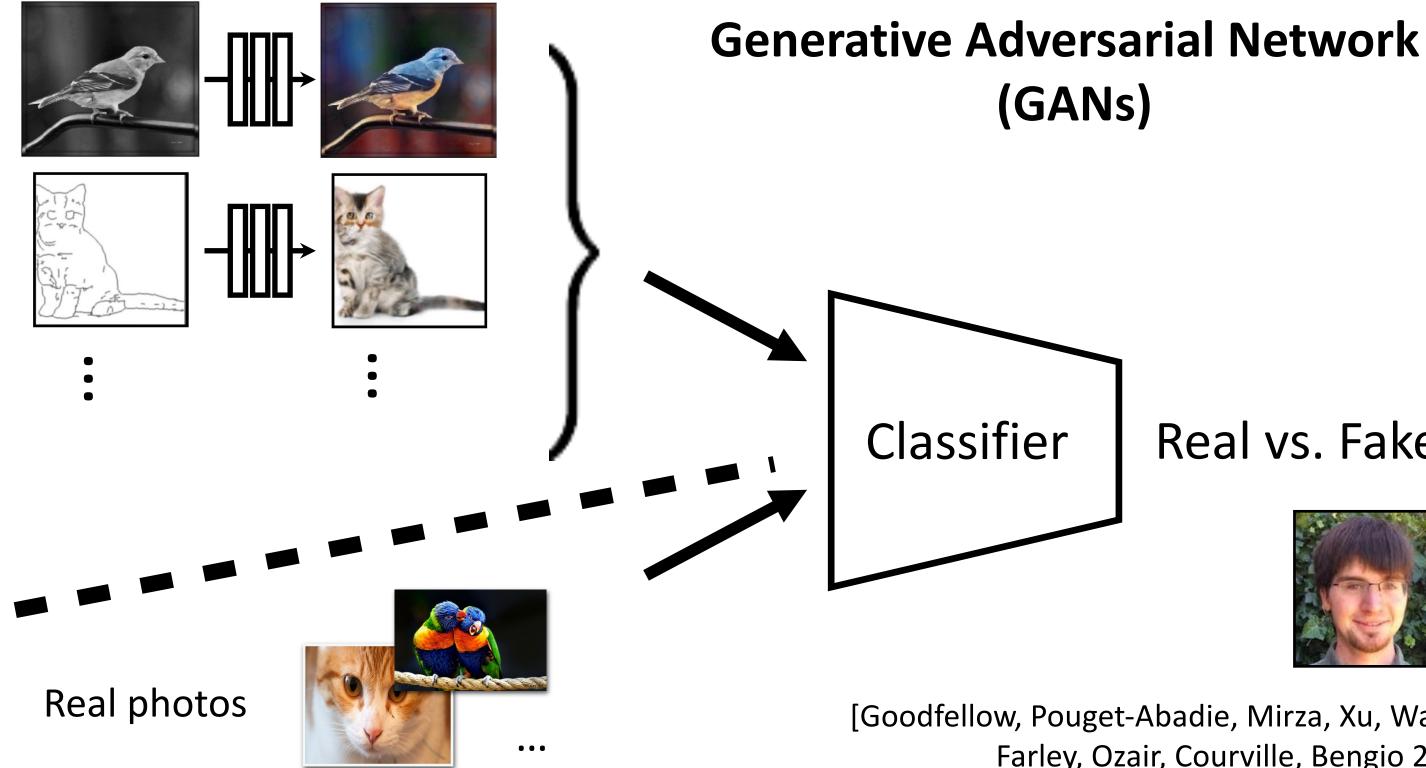


Universal loss?



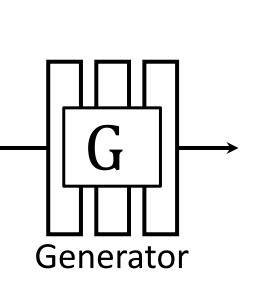
- •
- •

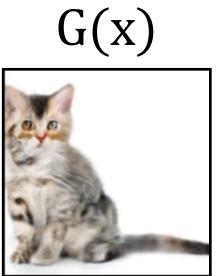
Generated images



Real vs. Fake

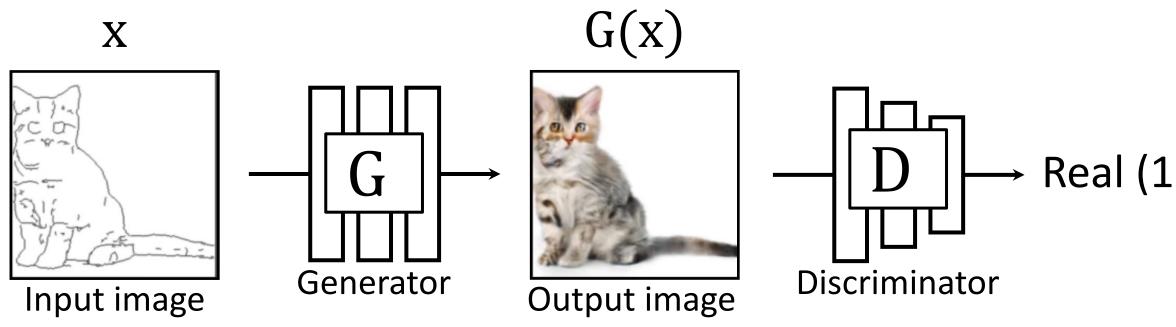
[Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio 2014]





Output image

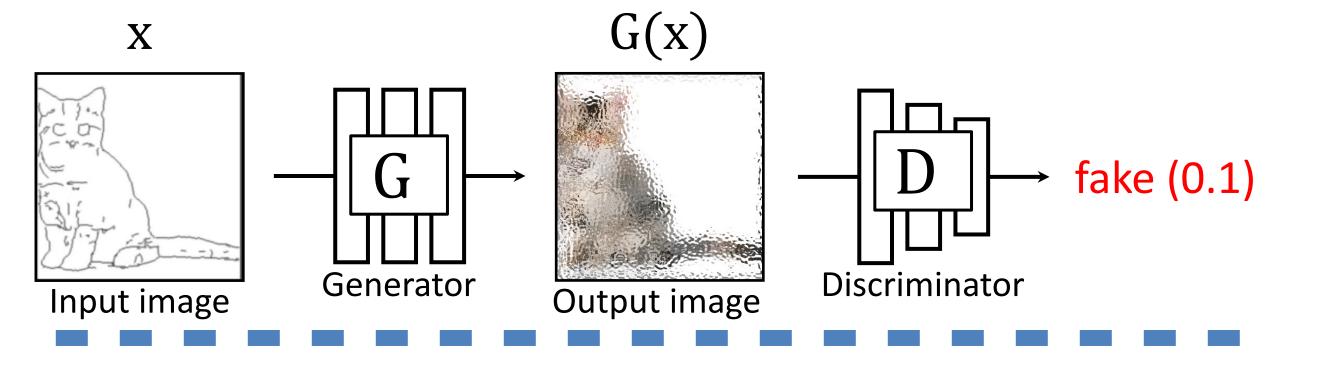
Input image



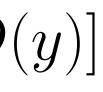
A two-player game:

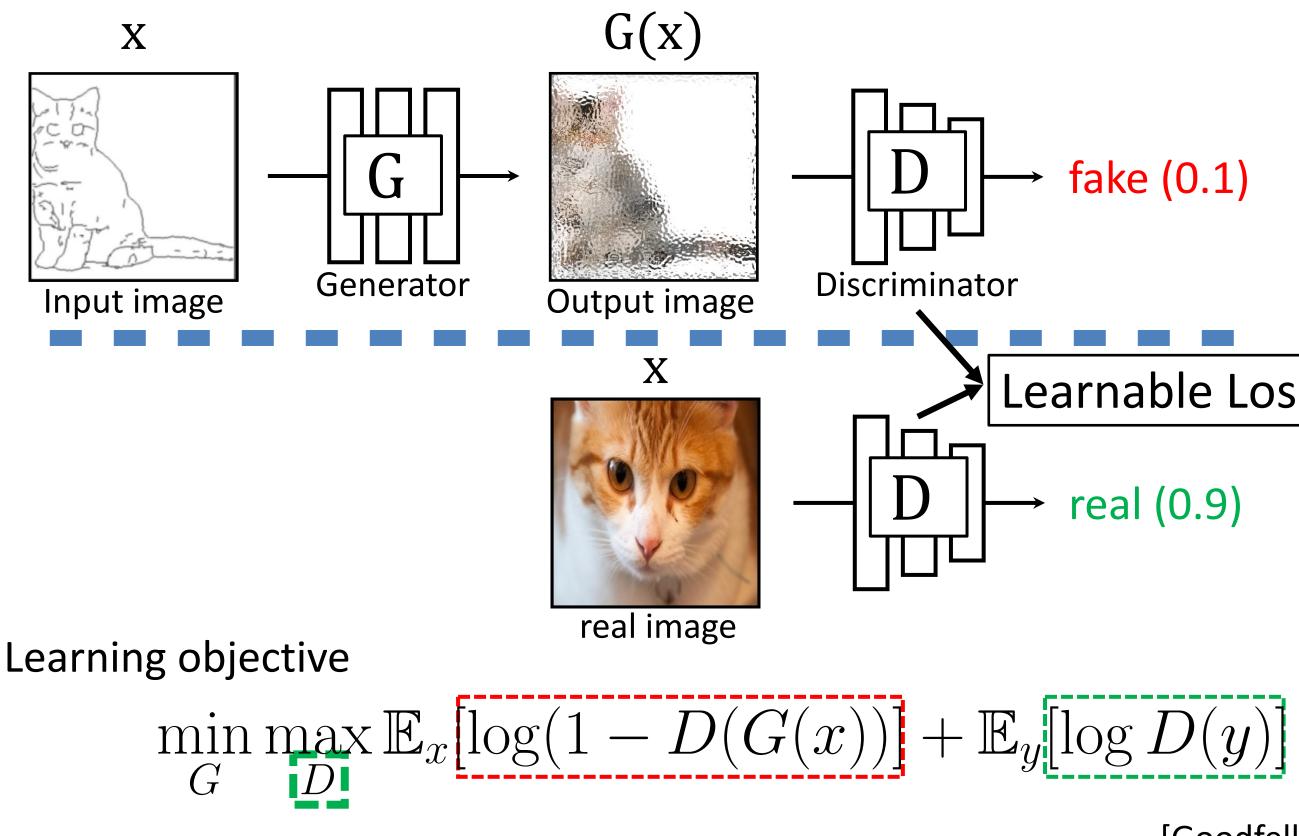
- G tries to generate fake images that can fool D.
- D tries to detect fake images. lacksquare

Real (1) or fake (0)?

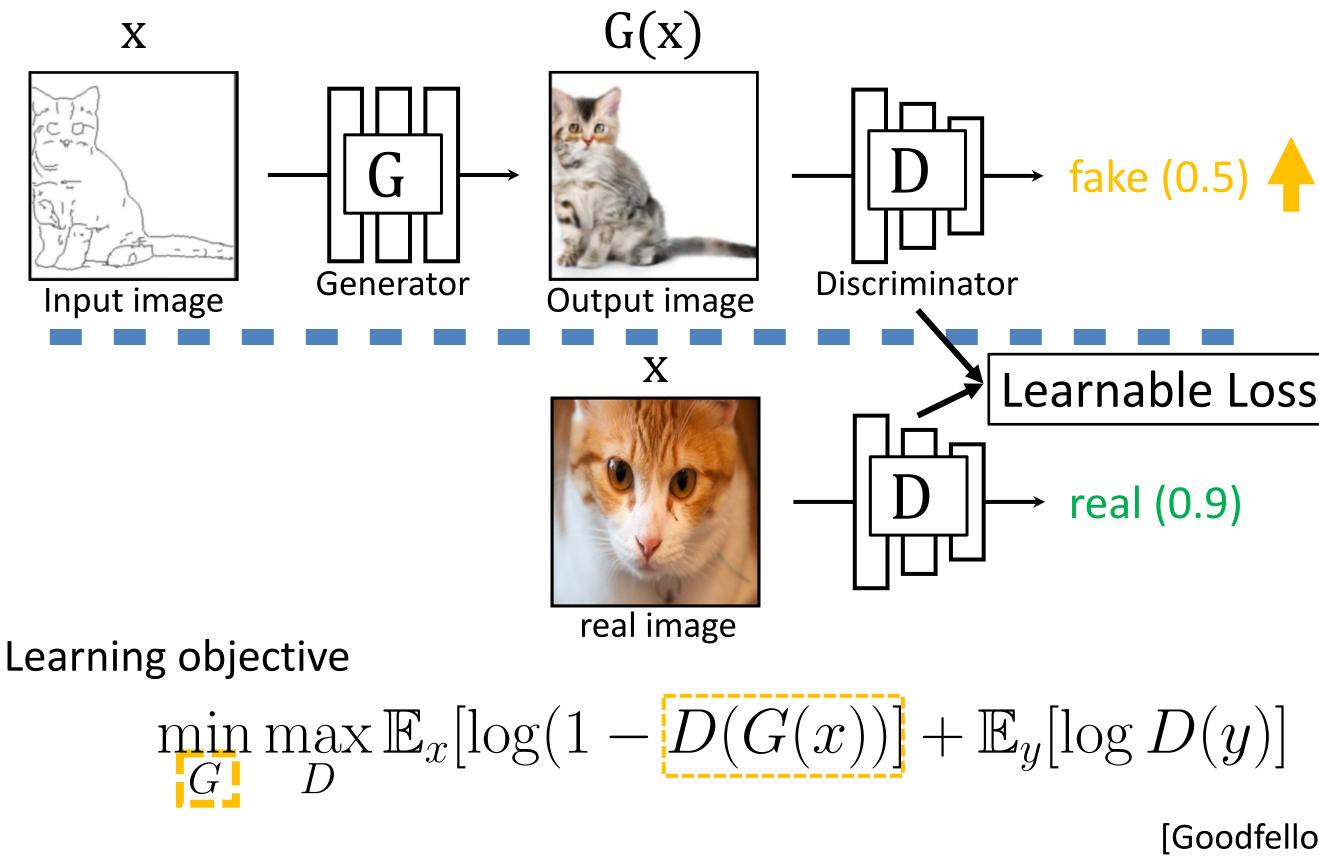


Learning objective $\min_{G} \max_{D} \mathbb{E}_{x} \left[\log(1 - D(G(x))) \right] + \mathbb{E}_{y} \left[\log D(y) \right]$

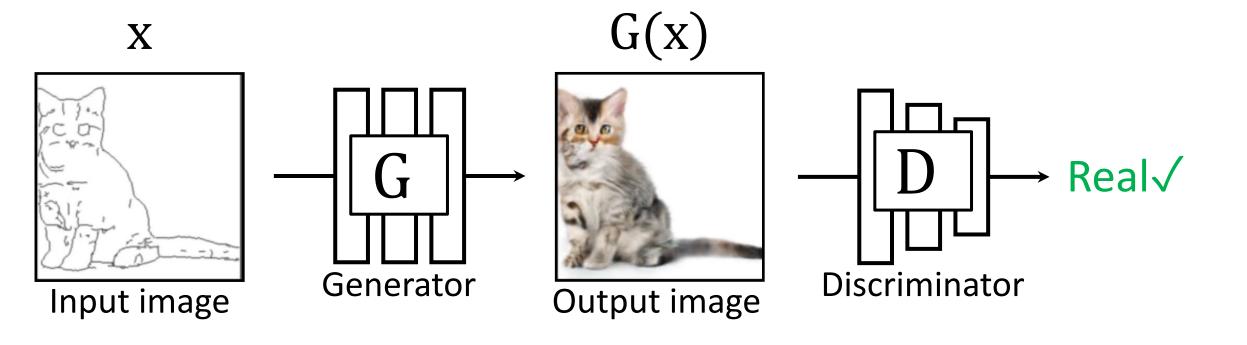




Learnable Loss function



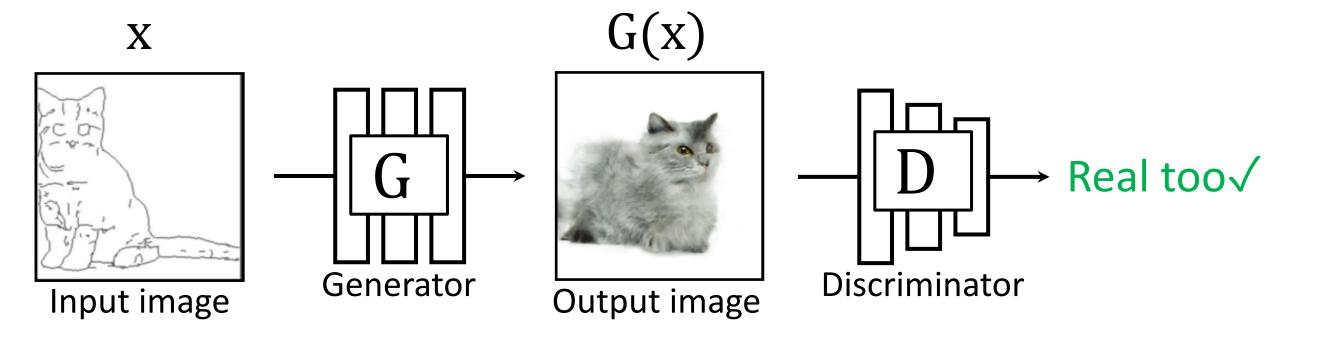
Learnable Loss function



Learning objective

 $\min \max \mathbb{E}_x[\log(1 - D(G(x))] + \mathbb{E}_y[\log D(y)]]$ G

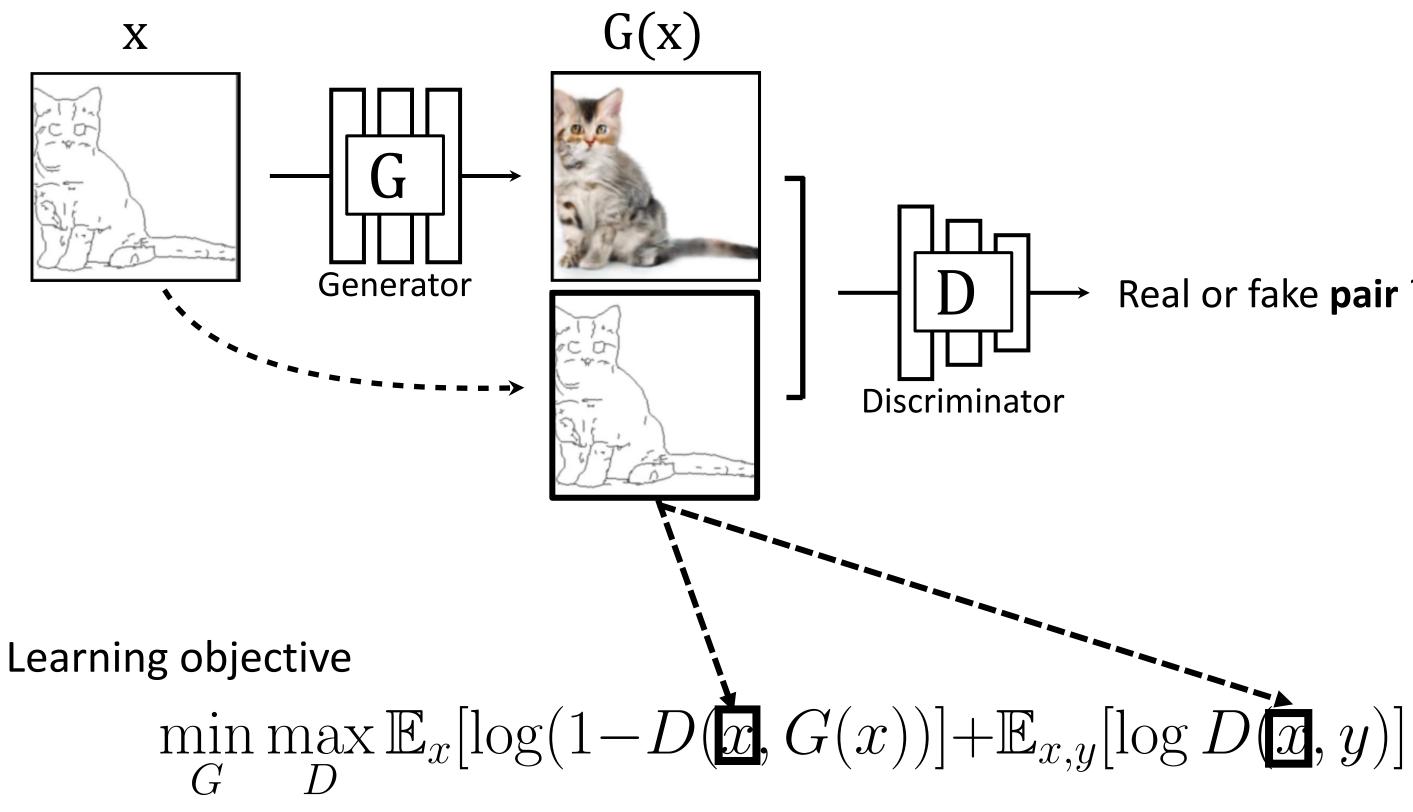
Pix2pix [Isola et al., 2016]



Learning objective

 $\min \max \mathbb{E}_x[\log(1 - D(G(x))] + \mathbb{E}_y[\log D(y)]]$ G

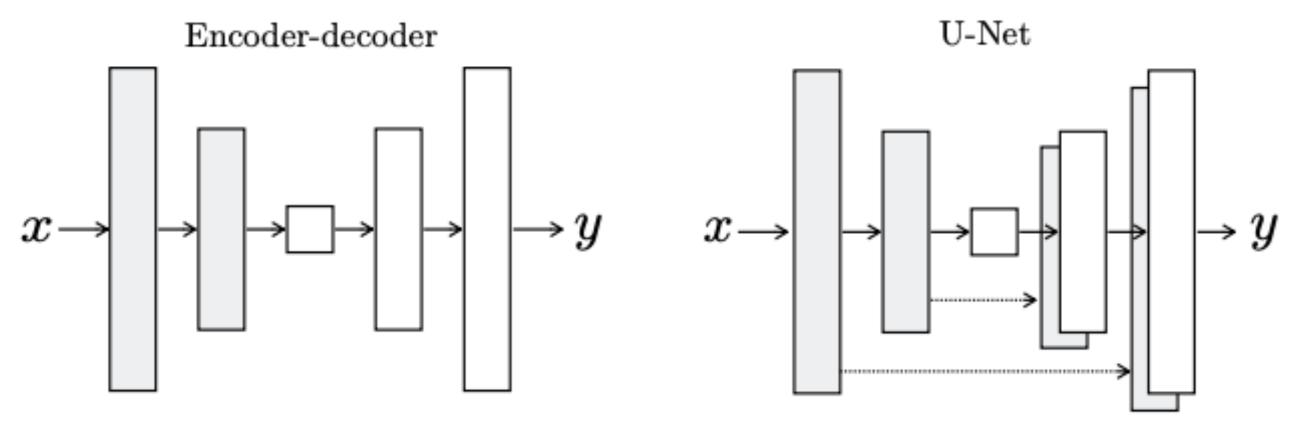
Pix2pix [Isola et al., 2016]



Real or fake **pair** ?

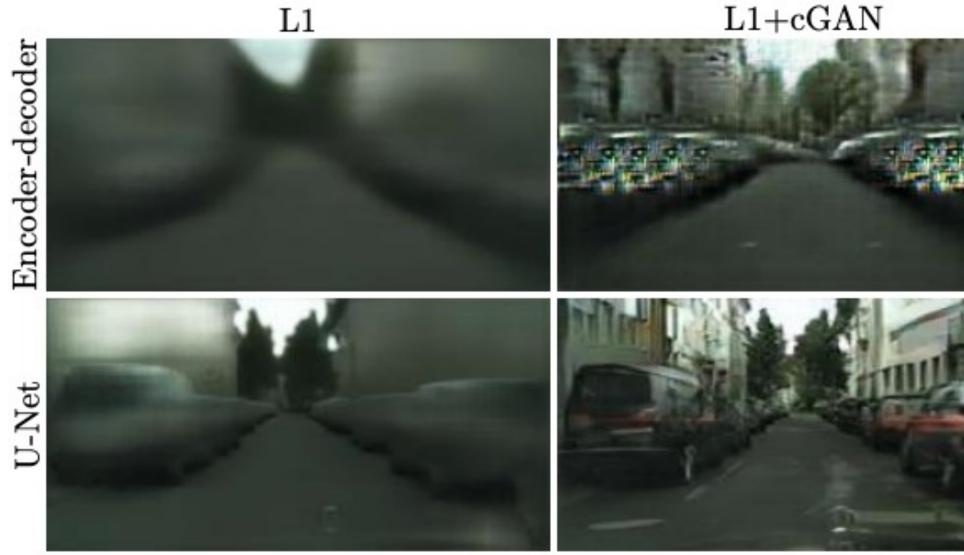
Pix2pix [Isola et al., 2016]

pix2pix Generator (U-Net)



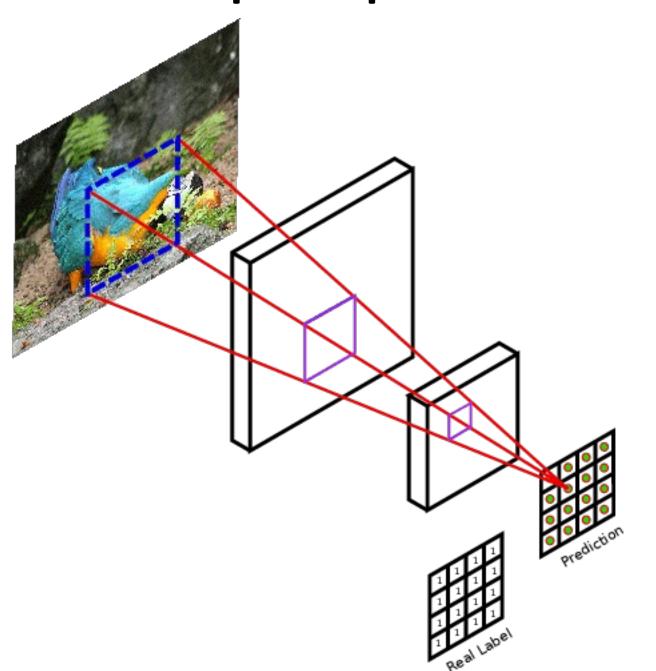
U-Net [Ronneberger et al.]: popular CNN backbone for biomedical image segmentation <u>U-Net</u>: preserve high-frequency information (e.g., edge) of the input image. Encoder-decoder: lose high-frequency details due to the information bottleneck

pix2pix Generator (U-Net)

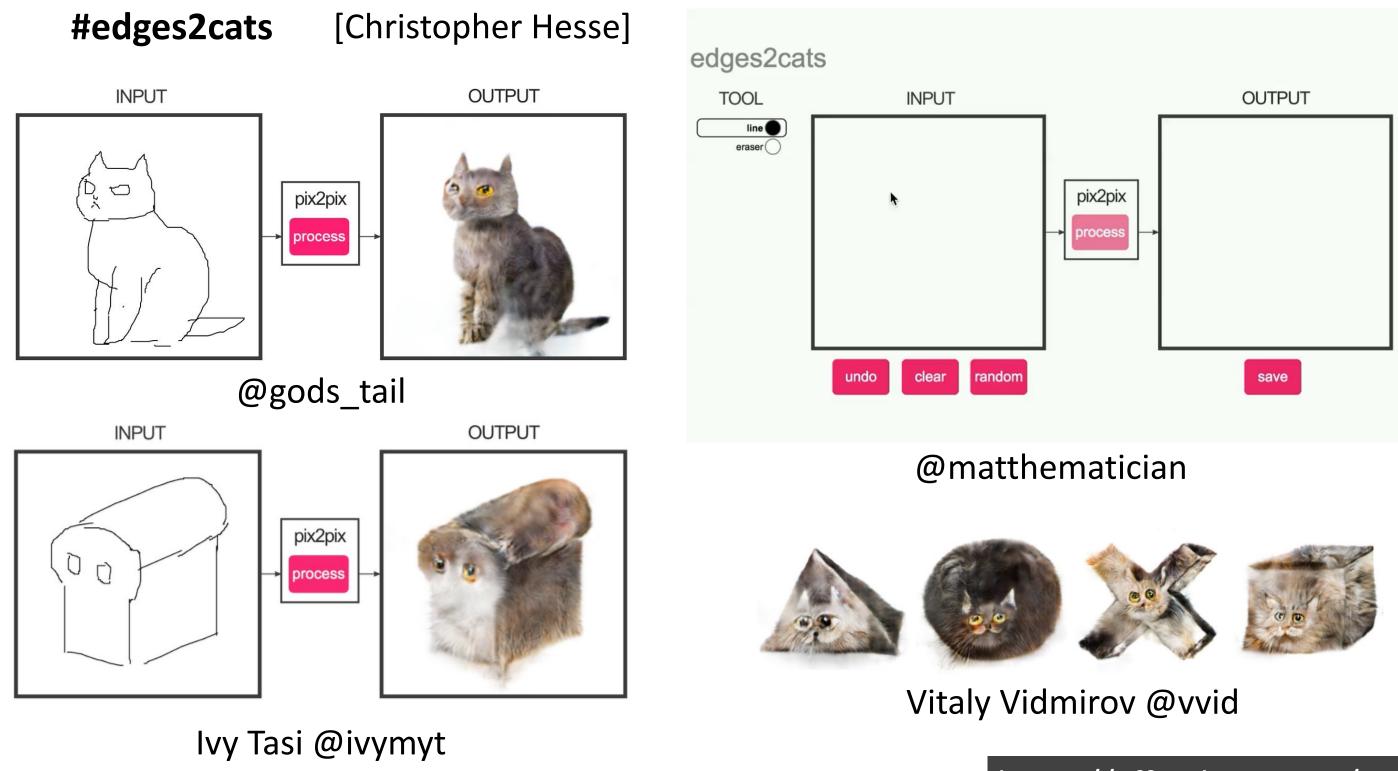


Generator design is critical for image quality. cGAN (conditional GANs) loss: capture realism. L1 loss stabilizes training (faster convergence)

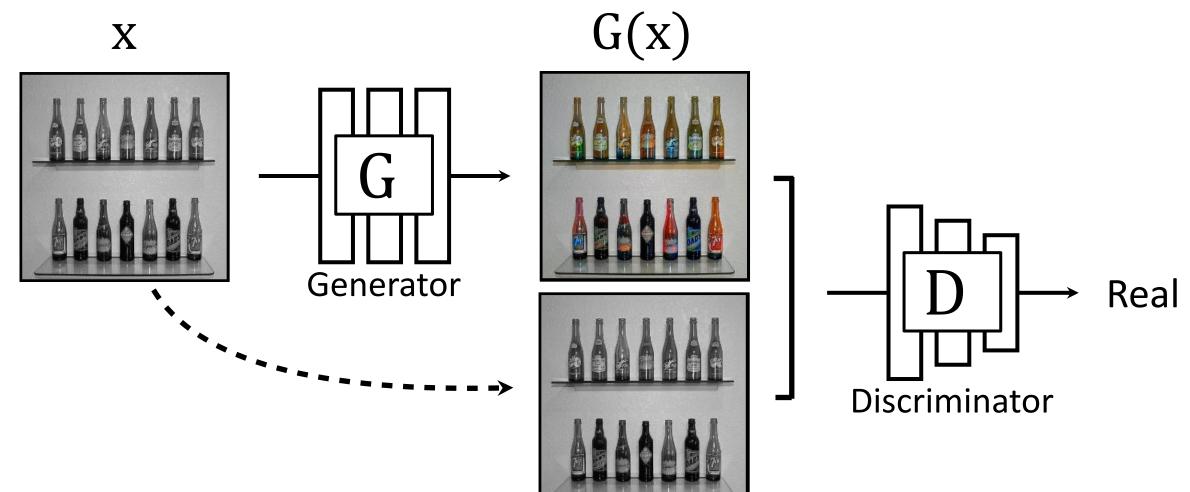
pix2pix Discriminator (PatchGAN)



- Rather than penalizing if output image looks fake, penalize if each overlapping *patches* looks fake • Focus on local visual cues (color,
- textures).
- <u>Global</u> structure: the input image has already encoded global structure. L1 loss can help as well.
- Advantages
- Faster, fewer parameters
- More supervised observations
- Applies to arbitrarily large images



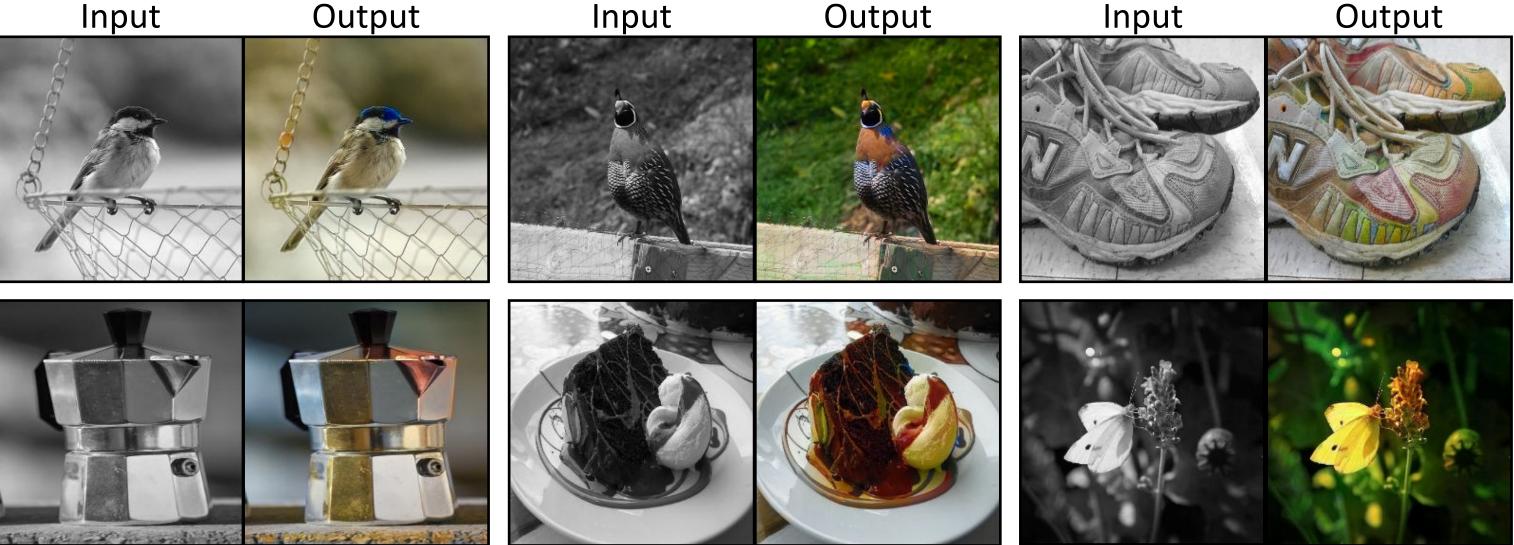
https://affinelayer.com/pixsrv/



Input: Skayskale Outputp Photolor

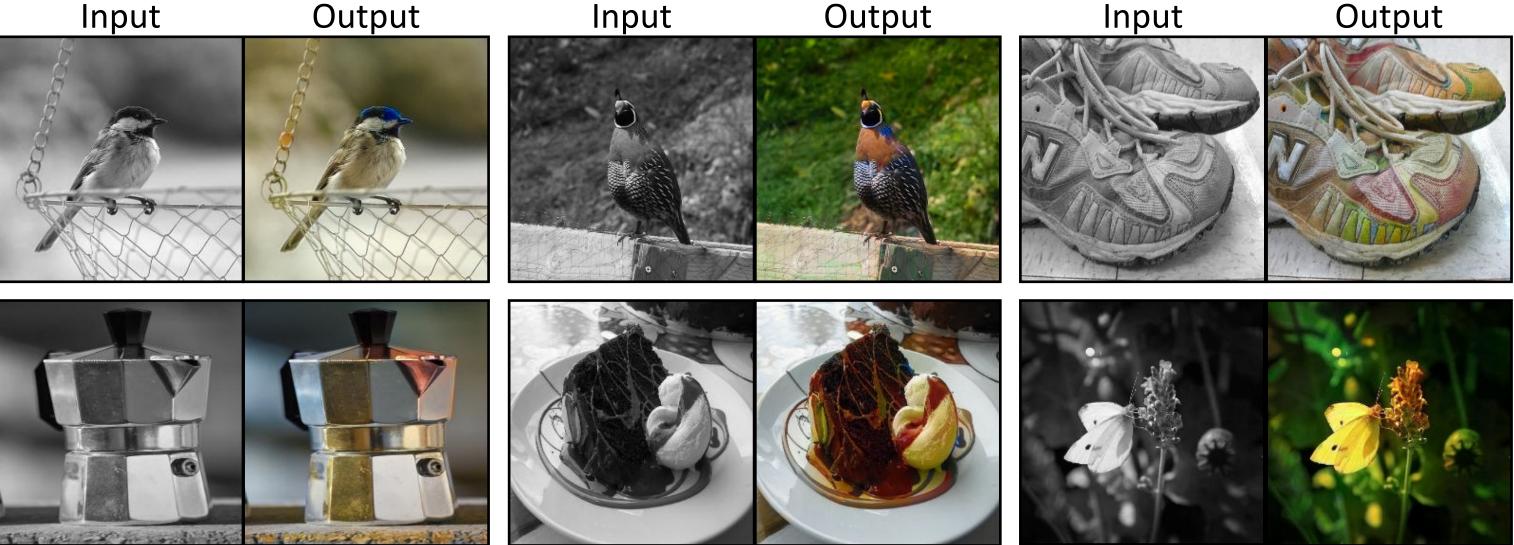
Real or fake **pair** ?

Automatic Colorization with pix2pix

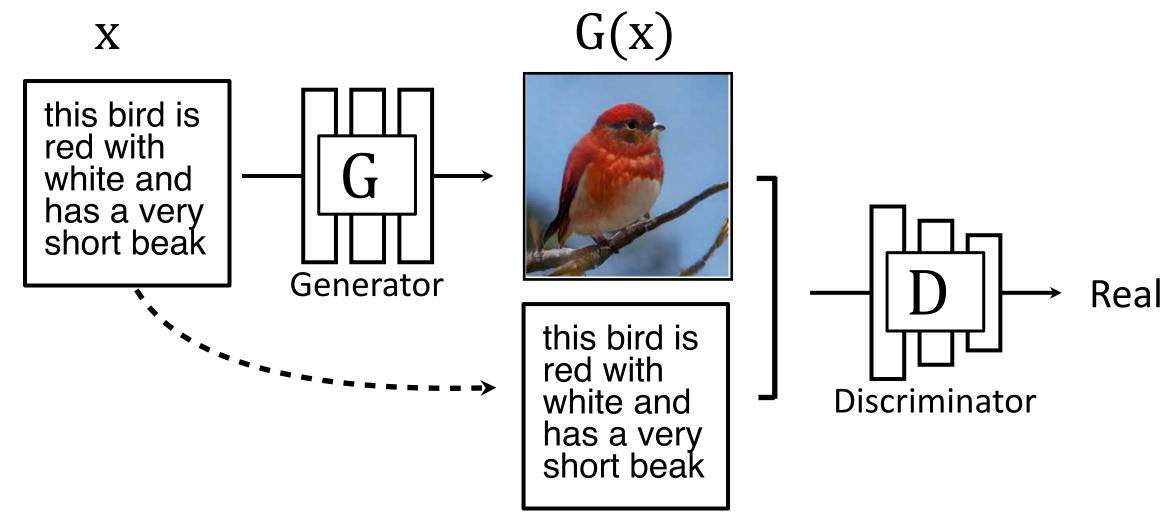


Data from [Russakovsky et al. 2015]

Automatic Colorization with pix2pix



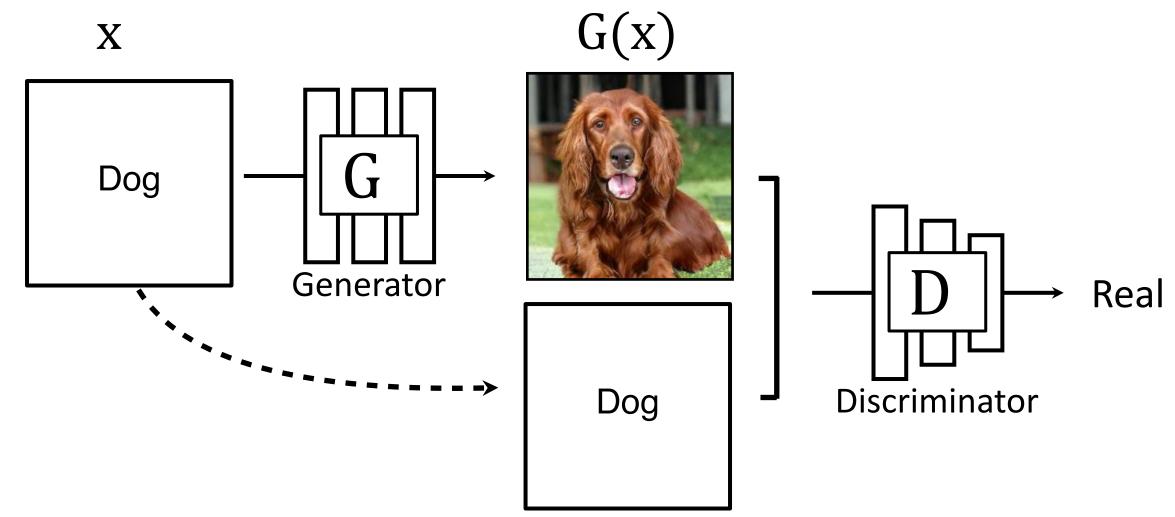
Data from [Russakovsky et al. 2015]



Input: **Text** → Output: **Photo** Text-to-Image Synthesis

StackGAN, StackGAN++ [Zhang et al., 2016 and 2017], AttnGAN [Xu et al., 2018]

Real or fake **pair** ?



Input: **Class** → Output: **Photo Class-conditional GANs**

cGANs [Mirza and Osindero. 2014], SAGAN [Zhang et al., 2018], BigGAN [Brock et al., 2019]

Real or fake **pair** ?

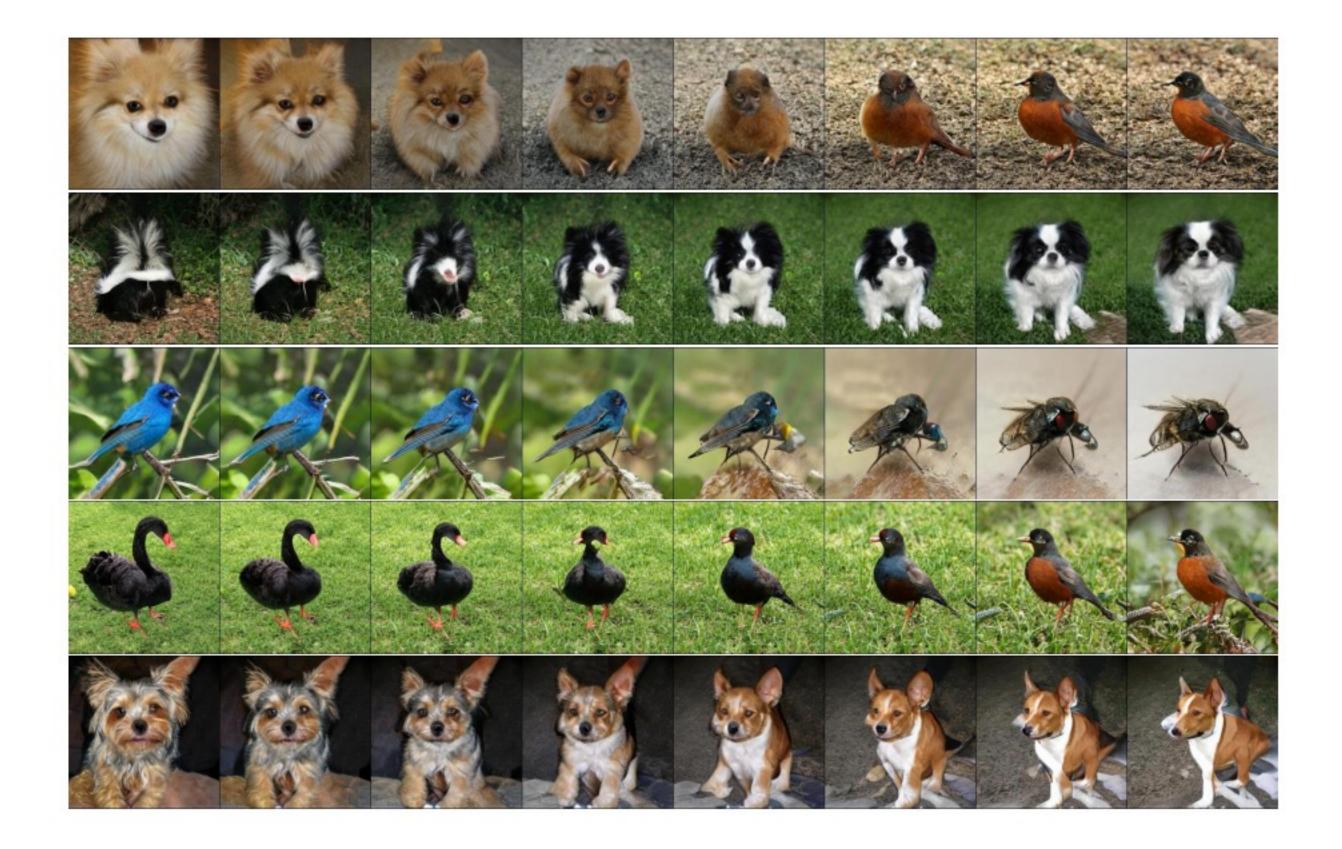
StyleGAN-XL [Sauer et al., 2022]

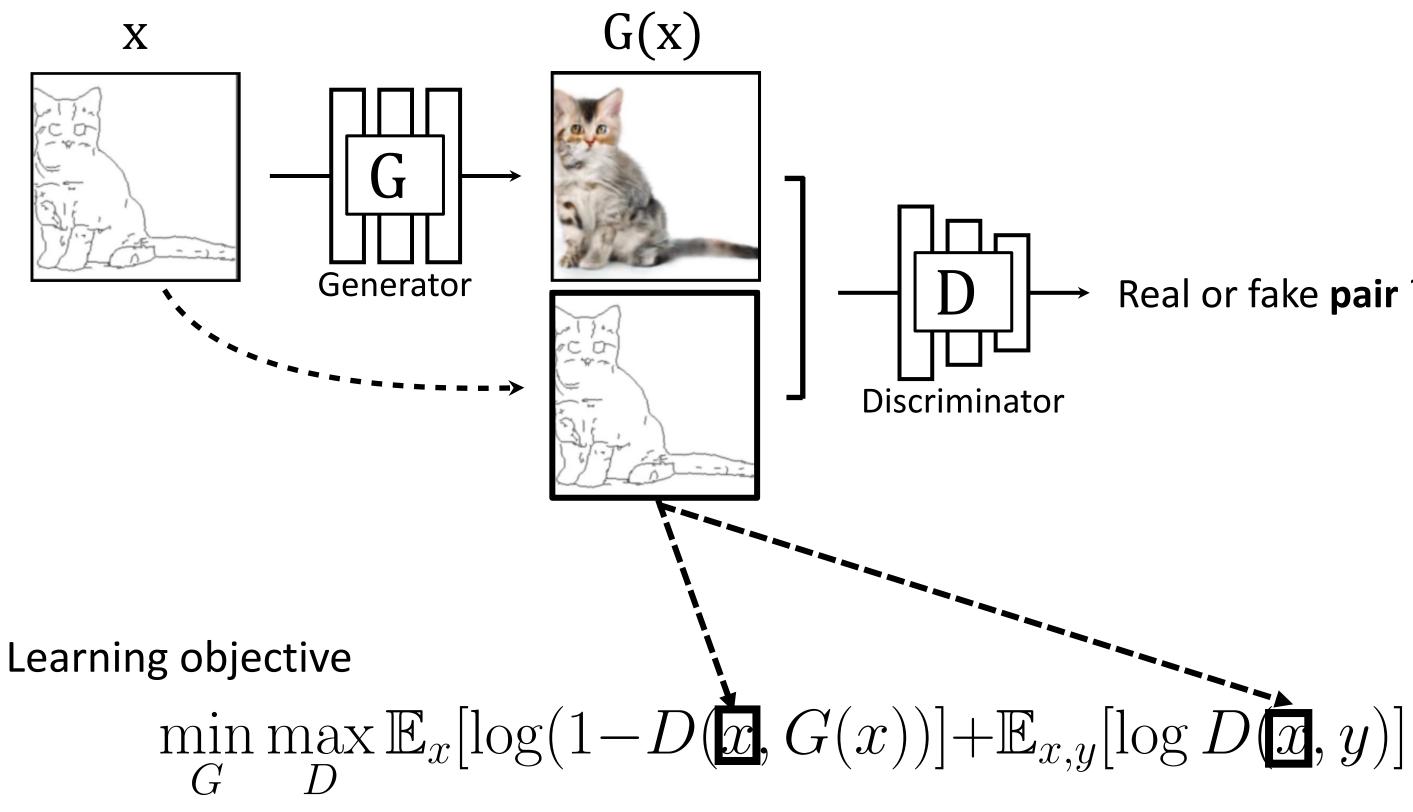
BigGAN

(a) 128×128

(b) 256×256

(c) 512×512





Real or fake **pair** ?

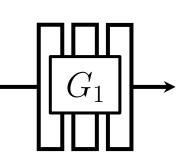
Pix2pix [Isola et al., 2016]

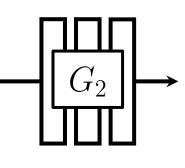
Limitations

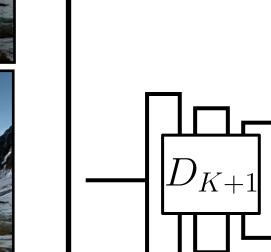
- One-to-one mapping.
- Low-resolution output.
- Requires paired training data

Improving Conditional GANs

- Multimodal synthesis.
- High-resolution synthesis.
- Model training without pairs (next lecture)







Discriminator

Discriminator: K+1 classification

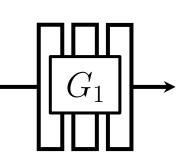
Multi-agent Diverse GANs [Ghosh et al., CVPR 2018]

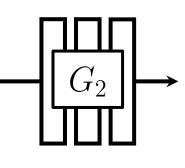
Generator: fool D to classify fake as real

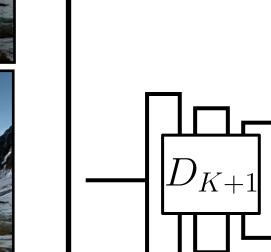
real OR from $G_1 G_2 \cdots G_K$

Synthesizing Multiple Results Night input Day output 1 Day output 2 Day output 3

Multi-agent Diverse GANs [Ghosh et al., CVPR 2018]







Discriminator

Discriminator: K+1 classification

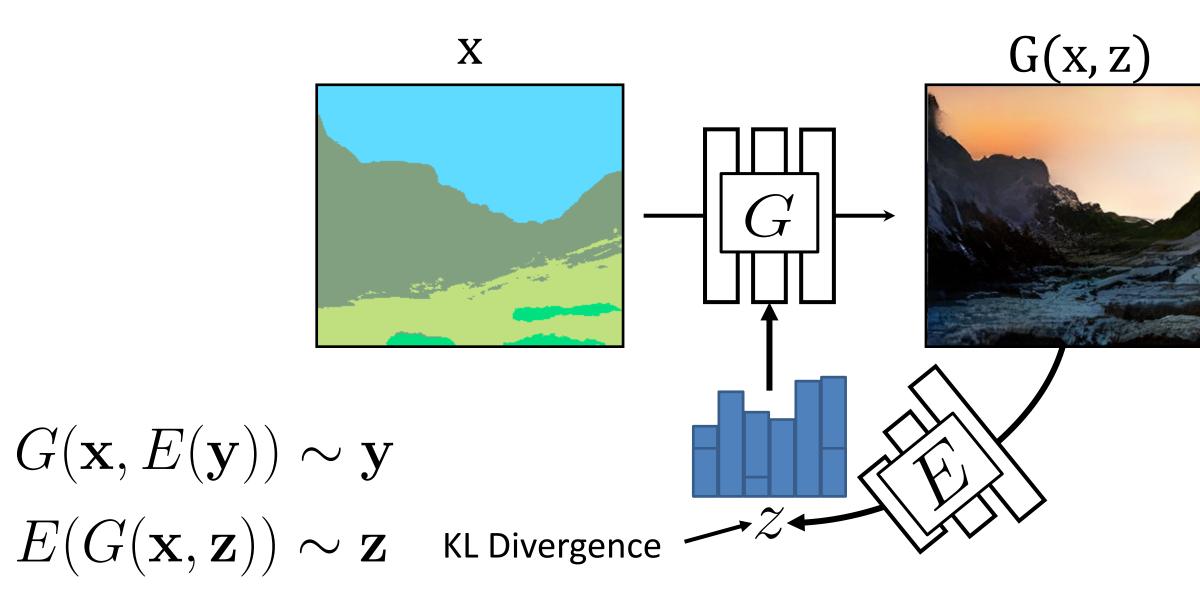
Multi-agent Diverse GANs [Ghosh et al., CVPR 2018]

Generator: fool D to classify fake as real

real OR from $G_1 G_2 \cdots G_K$

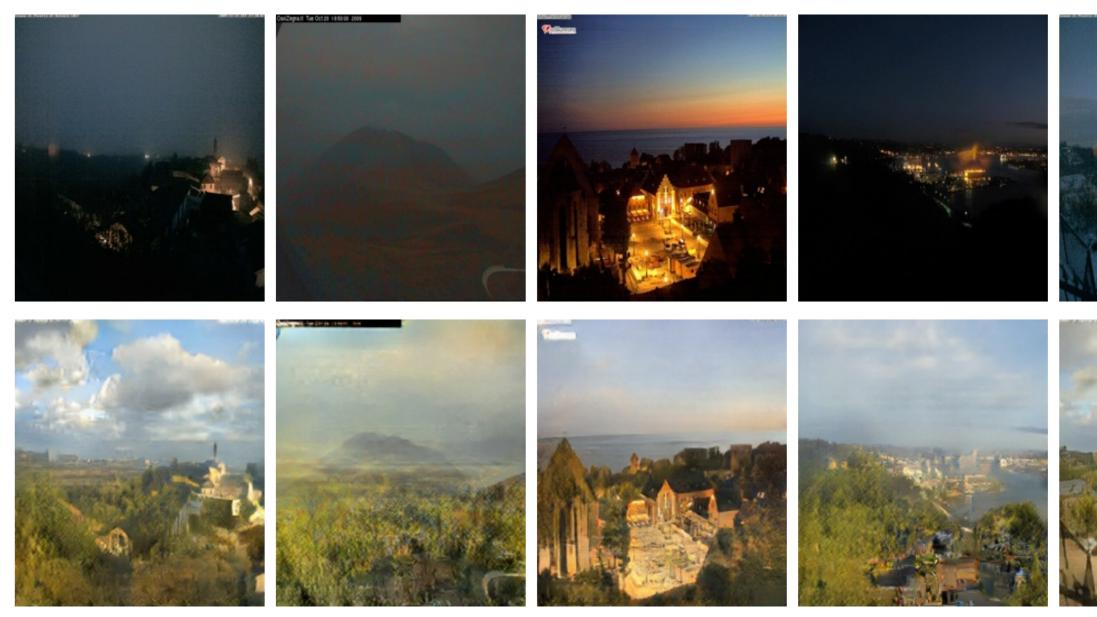
Synthesizing Multiple Results Night input Day output 1 Day output 2 Day output 3

Multi-agent Diverse GANs [Ghosh et al., CVPR 2018]



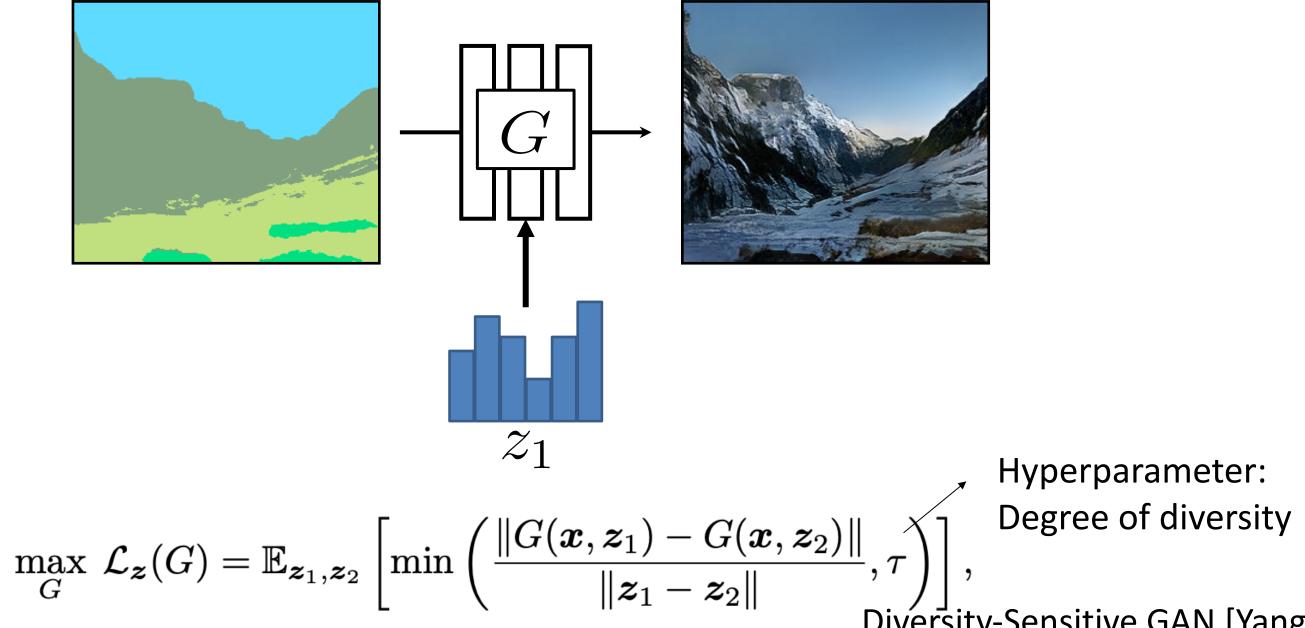
VAE-GAN [Larsen et al., 2016], BicycleGAN [Zhu et al., 2017]

BicycleGAN [Zhu et al., 2017]



BicycleGAN [Zhu et al., 2017]

Synthesizing Multiple Results $G(x, z_1)$ Χ



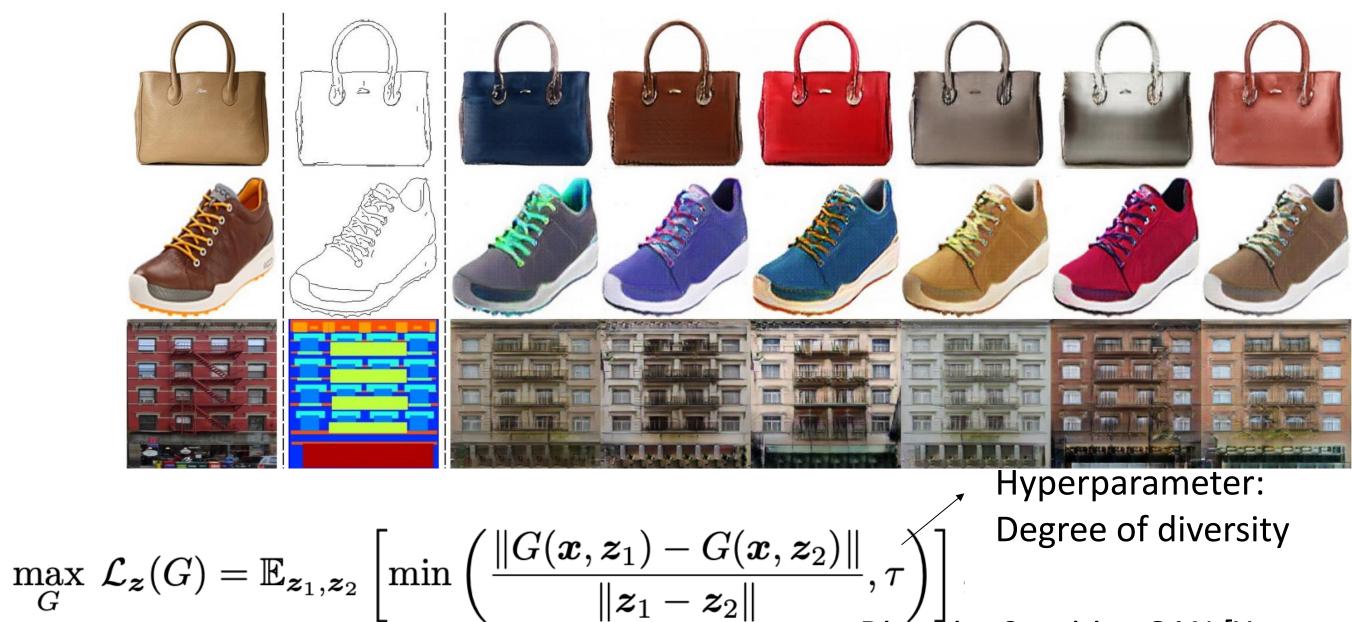
Diversity-Sensitive GAN [Yang et al., 2019]

Synthesizing Multiple Results $G(x, z_2)$ $G(x, z_1)$ Χ

 z_2 Hyperparameter: **Degree of diversity** $\max_{G} \mathcal{L}_{\boldsymbol{z}}(G) = \mathbb{E}_{\boldsymbol{z}_1, \boldsymbol{z}_2} \left| \min \right.$ $\overline{\|\boldsymbol{z}_1 - \boldsymbol{z}_2\|}$

Τ

Diversity-Sensitive GAN [Yang et al., 2019]



Diversity-Sensitive GAN [Yang et al., 2019]

